Research


I have been involved in a variety of research areas: Managing inspections using Learning Styles, estimating post-inspection defects using Capture-Recapture models, improving software engineering education, and tracking eye movements of software developers to improve requirements documentation. My multidisciplinary research is a collaborative effort of researchers from India as well as the United States. The experiment ranges partiticpans from both academia and industry.

Utilizing Deep Learning Compression Techniques for Low Powered Devices

Currently, deep learning models needs to be deployed on high performance systems. This research aims at achieving the deep learning model compression technique for low power devices (e.g., cellphones). The outcome of the research may open the doors for many solutions for deep learning problems via low-powered devices which is impossible today.

Improving fake news detection via deep learning techniques

Social media giants and the internet is struggling with the effective detection of fake news. This research utilizes deep learning techniques on the social media platform that may leads to improvement in the fake news detection. The research deals with the hybrid techniques as well as may include cognitive factors in the future.

Characterizing Reading Patterns of Software Inspectors Using Eye-Tracking System

The objective of this research is to validate the Learning Styles of software inspectors via their reading patterns. To achieve this goal, data from an eye-tracking device was used that captures the eye movement of inspectors while inspecting requirements document. The work is a collaborative effort between NDSU Center of Visual and Cognitive Neuroscience (NIH COBRE grant) Lab with psychology experts at CVCN. The analysis involved measuring and visualization of eye movement during inspection for inspectors of different Learning Styles and correlating them with their inspection performance.

Improving Fault Detection Effectiveness of Inspectors Using Cognitive Learning Patterns

Learning Styles (LS) have been used by the cognitive physiologists to understand the characteristic strength of an individual to acquire and process information. This research validated that the concept of LS can cross over to software engineering as a means of increasing the inspection effectiveness. Results provide detailed analysis on the effect of the LS of inspectors on fault detection abilities of inspection teams as well as individual inspectors.

WReSTT-CyLE – Web-based Repository of Software Testing Tutorials

Using a Web-Based Testing Tool Repository in Programming Course: I am a principal research assistant on the WReSTT (http://wrestt.cis.fiu.edu/) TUES-2 project at North Dakota State University (NDSU). WReSTT integrates aspects of collaborative learning and social networking features to improve students’ participation in using the available learning materials on software testing techniques and testing tools. I have analyzed the concepts of online education which helps in bridging the gap between industries and academia. Empirical evaluation of the WReSTT are conduced on the student’s acquisition of testing concepts in undergraduate programming courses at NDSU.

Collaborators

Abhinav Singh, Indiana University | Dean Knudson, North Dakota State University | Ganesh Padmanabhan, North Dakota State University | Gursimran Singh Walia, North Dakota State University | Maninder Singh Thind, North Dakota State University | Mark McCourt, North Dakota State University | Pratik Narang, Birla Institute of Technology | Urvashi Rathod, Symbiosis Center for Research and Innovation | Vaibhav Anu, Montclair State University